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Efficient transition path sampling for nonequilibrium stochastic dynamics
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The transition path sampling methodology is adapted to the efficient sampling of large fluctuations in
nonequilibrium systems evolving according to Langevin’s equations of motion. This technique is used to
simulate the behavior of the bistable Maier-Stein system at noise intensities much lower than those previously
possible.
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Recently, approximate theories have been developed
describe large, rare fluctuations in systems with Lange
dynamics that have been driven from equilibrium by a tim
dependent or nongradient~i.e., not the gradient of a poten
tial! force field@1–8#. These theories are only good approx
mations in the zero noise limit, and computer simulations
needed to explore the behavior of the system and the a
racy of the approximations at finite noise intensities. Ho
ever, the straightforward simulation of the dynamics is inh
ently inefficient, since the majority of the computation tim
is taken watching small, uninteresting fluctuations about
stable states, rather than the interesting and rare excurs
away from those states. Transition path sampling@9–13# has
been developed as a Monte Carlo importance sampling
trajectories that can efficiently harvest rare transitions
tween stable or metastable states in equilibrium syste
Only trajectories that undergo the desired transition in a s
time are sampled. In this paper, transition path samplin
adapted to nonequilibrium, dissipative, stochastic dynam
The principle innovation is the development of a new alg
rithm to generate trial trajectories.

The high-friction limit of Langevin’s equations of motio
describe overdamped Brownian motion in a force field

ẋi5f i~x,t !1ji~ t !. ~1!

The state of the system is specified by the vectorx. The
system is subjected to a systematic forceF(x,t), and a sto-
chastic forcej(t), resulting fromd-function-correlated white
noise with variancee

^ji~ t !&50, ^ji~ t !•jj~0!&5e d i j dt. ~2!

In this paper we are interested in systems that are no
equilibrium, either because the force fieldF(x,t) is time de-
pendent, or because it is nongradient. Dynamics of this c
can model a large range of interesting problems, includ
chemical reactions@14#, thermal ratchets@15#, and computer
networks@16#. As a particular example, we adopt the follow
ing two-dimensional system@x5(x,y)# proposed by Maier
and Stein@4#, namely,

F~x,y!5„x2x32axy2,2my~11x2!…. ~3!

This field is not the gradient of a potential energy unlessa
5m. The potential-energy surface for the gradient fielda
5m51, is shown in Fig. 1, which should serve to orient t
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reader. Of primary interest are the rare transitions betw
the stable states. For weak noise, almost all transiti
closely follow the optimal trajectory, the most probable e
path ~MPEP! ~see Fig. 2!. There are extensive theoretic
predictions @7,19# and simulation results@17–19# for this
system against which the algorithms developed in this pa
can be tested.

Exploring the weak noise behavior of these systems
pushed conventional simulation techniques to their lim
even for the very simple, low-dimensional dynamics so
considered. A single, very long trajectory is generated, a
one is obliged to wait for interesting events to occur. The
fore, it is desirable to construct a simulation that runs
quickly as possible. The very fastest simulations utilize
analog electronic model of the system of interest, which
then driven by a zero-mean quasiwhite-noise gener
@17,20#. Another approach has been to optimize the spee
the pseudorandom number generator@21#, since this compu-
tational effort often dominates the total simulation time f
simple stochastic dynamics. However, such simulations c
not incorporate any importance sampling of interest
events. The total simulation time necessarily increases w
the rarity of the event under study, which typically increas
exponentially as the noise intensity decreases.

The transition path sampling methodology has been
veloped to efficiently sample rare events in equilibrium s

FIG. 1. The potential-energy surface of the Maier-Stein syste
Eq. ~3!, with a51 andm51. Darker shading indicates lower en
ergies. Note the stable states at (61,0), the transition state at (0,0)
and the surface dividing the stable states~the separatrix! at x50.
These general features persist for the other values of the param
used in this paper, although the force field is no longer the grad
of a potential energy. For this equilibrium system the most proba
path connecting the stable states~and therefore the path that dom
nates transitions in the weak noise limit! runs directly along thex
axis.
©2001 The American Physical Society09-1
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tems. The main innovation is to sample path space dire
using a Monte Carlo algorithm; instead of passively waiti
for the dynamics to generate an interesting trajectory, a M
kov chain linking different trajectories is constructed, ea
member of which incorporates the event of interest. T
path ensemble Monte Carlo is completely analogous to c
ventional Monte Carlo algorithms acting on configuration
ensembles. A trial trajectory is generated by a small, rand
change in the previous trajectory; it is immediately rejec
if the desired boundary conditions are not met~typically that
the path starts in region A and ends in region B!, and it is
accepted with a probability that generates the correct di
butions of trajectories.

Unfortunately, the standard methods for efficiently sa
pling path space cannot be directly applied to nonequilibri
Langevin dynamics. Perhaps the most obvious method
generating new trajectories in a stochastic dynamics is
local algorithm@22#. The path is represented by a chain
states,x5@x(0),x(1), . . . ,x(L)#, and the probability of the
path,P@x#, is written as a product of single time step tran
tion probabilities,P@x(t)→x(t11)#;

P@x#5r„x~0!…)
t50

L21

P@x~ t !→x~ t11!#. ~4!

Here, r„x(0)… is the probability of the initial state of the
path. A trial trajectoryx8 is generated by changing the co
figuration at a single time slice, it is immediately rejected
the desired boundary conditions are not fulfilled, and it
accepted with the Metropolis probability,

Pacc~x→x8!5minF1,
P@x8#Pgen~x8→x!

P@x#Pgen~x→x8!
G , ~5!

which ensures a correctly weighted ensemble of paths. H
Pgen is the probability of generating the trial configuratio
x8.

FIG. 2. A representative sample of exit paths~thin lines! for the
Maier-Stein system witha56.67,m51.0, ande50.005, generated
from a path sampling simulation. These trajectories cluster aro
the most probable exit paths~MPEP’s! ~thick lines!. The MPEP’s
were calculated via simulated annealing of the transition paths
02610
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Although effective@23#, the local algorithm suffers from
several deficiencies, the most serious of which is that
relaxation time of the path scales asL3, whereL is the total
number of time steps@24#. The Maier-Stein system require
on the order of thousands of time steps to make the la
rare excursions away from the stable states that are of in
est, which renders the local algorithm impractical.

Several simple and efficient methods of generating t
trajectories~shooting and shifting@10#! have been develope
for equilibrium dynamics. Unfortunately, they are not d
rectly applicable to nonequilibrium dynamics, since they
sume a knowledge of the initial state probability. Statistic
mechanics provides simple expressions for equilibrium pr
abilities, but no such simple expression exists for noneq
librium steady states.

Fortunately, there is an alternative representation of a
chastic path that admits a simple and efficient path samp
algorithm. A stochastic trajectory can be defined by the ch
of states that the system visits, but it can also be represe
by the initial state and the set of random numbers, the no
history, that was used to generate the trajectory. The p
ability of the path can then be written as

P@x#5r„x~0!…)
t50

L21
1

A2pe
exp$2j~ t !2/2e%, ~6!

where eachj is a Gaussian random number of zero mean a
e variance. This is a convenient representation, since we
mally generate a stochastic trajectory from a set of rand
numbers, and not random numbers from a trajectory.

Suppose that we have the initial state and the noise his
of a relatively short path that undergoes the rare even
which we are interested.~We will return to the problem of
creating this initial path shortly.! A trial path can be created
by replacing the noise at a randomly chosen time step wi
new set of Gaussian random numbers. This trial trajector
accepted as a new member of the Markov chain of paths
still undergoes the event of interest. The noise histories of
accepted paths become correlated in time due to this c
straint. Since high-friction Langevin dynamics is highly di
sipative, nearby trajectories converge rapidly, and a sm
change in the noise generally produces a small change in
trajectory. Therefore, most trial trajectories are accept
Only rarely does the change in the noise produce a path
no longer executes the event under study.

This noise sampling algorithm does not suffer from t
poor scaling of relaxation time with path length that rend
the local algorithm impractical, since a local move in noi
space induces a small but nonlocal move in path space. C
sider, for a moment, an unconstrained path. Then ev
change in the noise history is accepted. AfterO(L) moves,
almost all of the random numbers used to generate the
will have been replaced, and an entirely new path will ha
been generated, one that is uncorrelated with the prev
path. Generating a trial trajectory from the noise history
very fast since the random numbers needed to generate
path have already been created and stored. The amou
information that must be stored scales with the number

d
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time steps, but this is a trivial amount of memory for t
low-dimensional systems considered here.

Unlike the local path sampling algorithm, sampling t
noise history allows a choice of methods for integrating
dynamics. For compatibility with previous digital simula
tions @25# we used the second-order Runge-Kutta meth
Compared to a simple finite difference equation, this integ
tor is more stable and allows longer time steps. The ma
mum total time of the trajectories wast516, with a time
step ofDt51/512, for a total of 8192 time slices. This tim
step is small enough to ensure better than 90% trial m
acceptance rate at any one time slice for the noise intens
studied. It requires approximately 1 s of CPUtime to gener-
ate a statistically independent path. Unlike simulations~digi-
tal or analog! without importance sampling, these simulatio
times are largely independent of the noise intensity.~There is
a logarithmic increase of the transition time with decreas
noise @21#, which would eventually require longer paths!
The smallest noise intensities used to generate trajectorie
this paper are typically an order of magnitude smaller th
the smallest values that can be practically studied with
analog simulation.

An initial path can be generated using the following pr
cedure. The initial point of the path is fixed, an entirely ra
dom initial noise history is generated, and the end poin
the corresponding trajectory is computed. A small chang
then made in the noise history, and this move is accep
only if the new end point of the trajectory is closer to t
desired final region than the previous path. In this manner
final point of the trajectory can be dragged into the desi
region, and a valid initial path obtained. It is then necess
to relax this initial path so that the correct transition pa
ensemble is generated.

A separate Monte Carlo move is used to sample the in
configuration. A trial configuration is selected from an e
tirely separate, nonpath sampling simulation that has b
relaxed to the steady state. A long trajectory ensures tha

FIG. 3. Exit location distributions for the Maier-Stein syste
with a56.67, m52.0, ande50.05 (s), 0.01 (h), or 0.005 (d).
Symbols are averages from a path sampling simulation~8192
samples! and lines are the theoretical predictions,P(y)
}exp(22y2/e) ~Refs.@7,18#!.
02610
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final state is largely insensitive to the initial state, and the
fore that this trial move is often accepted, even if the chan
in the initial state is large. Alternatively, the initial state ca
simply be fixed at some representative point of the stea
state ensemble. The simulation results will not be altere
the trajectory is significantly longer than the relaxation tim
of the system.

Figure 2 shows several representative trajectories
carry the system from the stable region around (1,0) to
separatrix atx50. Form51.0 anda.4 the set of exit paths
bifurcates@3,5#. Instead of following thex axis to the transi-
tion state, trajectories instead make large excursions a
from the axis, and approach the transition state from the t
or bottom-right quadrants. For weak noise, a single p
sampling simulation of this system would lock into either t
top or bottom set of trajectories and equilibration in pa
space would be very slow. This is analogous to the beha
of glasses and procedures developed to study such sys
could be used to aid path sampling. For the current sys
this is not an issue, since this bifurcation is known to ex
and the paths are symmetric about thex axis.

The finite noise trajectories cluster around the most pr
able exit paths, which are the transition paths in the z
noise limit. These can be calculated directly from theory,
here they were generated via gradually annealing the sys
to very weak noise intensities (e51025), which is analogous
to the path quench used in Ref.@10#. The acceptance rate fo
parts of the path approached 0% ate'0.0005, effectively
freezing the trajectory in place. This represents the low
noise limit for the current implementation. To study weak
noise it would be necessary to use smaller time steps~which
would increase the total number of time slices! or smaller
changes in the noise.

There are a variety of predictions regarding the distrib
tion of exit locations@7,19#, the point on they axis where the

FIG. 4. Exit location distributions for the Maier-Stein syste
with a510, m50.67, ande50.04 (s) or 0.005 (d). Symbols are
averages from path sampling simulations~8192 samples! and lines
are the symmetrized Weibull distribution,P(y)5uyu(2/m)21

3exp(2uy/Au2/m/e) ~Refs. @7,19#!. The parameterA'1 is deter-
mined from the behavior of the most probable exit path near
saddle pointy56Axm.
9-3
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transition path first crosses from one stable state to the o
Figure 3 shows path sampling simulation results and theo
ical predictions for parameters where it is known that
theoretical predictions are accurate. Excellent agreeme
observed, validating the path sampling algorithm. Fina
Fig. 4 displays exit location distributions and theoretical p
dictions for parameters where the agreement between the
is known to be poor@19#. Path sampling was used to stud
the exit location distribution at a noise intensity appro
mately 10 times smaller than previously possible. Even
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this very low noise intensity, the agreement between the
and simulation remains unsatisfactory.
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